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Resonant sloshing in shallow water 
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The ordinary differential equation 
2 

:K2(g"+g)-Ahg-$'+- Cost = -3 g2dt, 
2 --II n 

which represents forced water waves on shallow water near resonance, is considered 
when the dispersion K is small. Asymptotic methods are used to show that there are 
multiple solutions with period 2n for a given value of the detuning parameter A. The 
effects of dissipation are also considered. 

1. Introduction 
The study of the effects of nonlinearity on the resonant sloshing of water in a 

horizontally oscillated container was initiated by Moiseyev (1958) who only considered 
situations where the water is fairly deep. Other authors (Chester 1968; Ockendon & 
Ockendon 1973; Cox & Mortell 1983; Miles 1985) have since suggested that, for 
shallow water, the periodic response near one of the resonant frequencies is governed 
by a certain second-order non-autonomous ordinary differential equation. When the 
depth is formally set equal to a critical depth, which is zero in the absence of surface 
tension, and when damping is neglected, this ordinary differential equation reduces 
to a quadratic equation which has a unique continuous solution outside a small 
detuning range close to a resonant frequency. The same quadratic equation is 
encountered in the resonant oscillations of gas in a tube (Chester 1964) in which case 
there is a unique solution for all values of the detuning parameter, but the solution 
contains a compressive shock wave in the detuning range mentioned above. However, 
apart from the experimental evidence of Chester & Bones (1968) and the numerical 
results of Ockendon & Ockendon (1973), Chester (1968) and Cox & Mortell (1986), 
little is known about the effects of a small dispersive term, representing the depth, 
on these resonant responses. The aim of this paper is to describe some asymptotic 
solutions which may help to understand the multiple periodic solutions which the 
above authors have described. 

In $2 we shall give a brief rederivation of the governing ordinary differential 
equation and recapitulate its behaviour in the non-dispersive case. Then in $3 we shall 
describe asymptotic representations of the periodic response for small non-zero water 
depth. In the final section we discuss how dissipative effects modify the results of 
§ 3. 

2. A model for shallow-water sloshing 
Following Ockendon & Ockendon ( 1973), we begin by assuming that two dimensional 

inviscid irrotational motion is induced in a rectangular tank of water of length X L  
which is forced to oscillate horizontally with frequency w and amplitude a, where 
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a < L, and look for solutions with period 2 x 1 0  in time. We shall also neglect surface 
tension initially although we shall return to real-fluid effects later. 

Choosing the x-axis along the mean surface elevation hL above the base, the 
dimensionless model for the velocity potential qb and the elevation €7 is 

V 2 # = 0  in -Ecost<x<x--Bcost,  - h < y  < v ,  
with q5y=0 o n y = - h ,  

9 y  = % + “ 9 X T X  1 on y = €7, 
q + ( l + S )  tanhh($,++(#:+#i)) = 0 j 
9, = sint on x = --B cost, 7c--6 cost, 

where E = a / L  and the detuning S = - 1 + Lw2 coth hlg is small near the fundamental 
resonant frequency. For shallow water we have three small parameters, B which 
measures the drive amplitude, 6 the detuning parameter, and h the depth parameter. 
As explained in Ockendon & Ockendon (1973) the appropriate parameter ranges, 
which match those of Moiseyev (1958) when h = 0(1), are the ‘Korteweg-de Vries’ 
scalings in which 

are both O(1). Since h is small (O(d)) ,  it  is necessary to rescale by writing y = ~%j, 
9 = e-33 and 7 = s-&j so that the equations become 

K = he-:, A = &-a 

- 
(bgg+d$,, = 0, 
- 

with # , - = O  ony=--K, 

$, = €3 sint on x = - E  cost, n--E cost. 

Now expand 3 = ~o+8q51+~~z+.  . . and 
give 

= ~ ~ + d ~ ~ + q ~ + .  . . . The terms of O(1) 

$ 0  = A @ ,  t), T o  = -KA,, 

where A,  = 0 on x = 0, x .  

The next approximation gives q51yy = -A,, and, using the condition on ij = - K ,  

+1 = - ! p 4 , , ( Y + ~ ) ~  +C(x, t). On Y = 0, q51g = qot, which gives A,, = A,, and hence 
#o =f(t-x) +f(t+z), where the conditions on x = 0, n imply thatfhas period 2n. The 
third boundary condition leads to 

Vl = $3Axzt - K C ,  - KhA, -kKAi + 4 K 3 A , .  

@ 2y -=1A 6 x x Z X ( Y + K ) 3 - c z x ( Y + K )  

Pursuing the solution to  terms of O ( B ) ,  

and the boundary condition becomes 

Hence 
9zg = T I ,  + 90, To, - T o  @1gg on Y = 0. 

c,, - c,, = - $K2A,,,, + h - - A,, + A, A,, + 2A, A,, 

where f+ =f(tfz)  

( 3 
=-I gK 2 (f, iv +f?)+ (h-&?)(f(;-fl)+ (f;+f~)(fT+f-“)+2(f;-fl)(f~-flI), 
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and C, = sin t on x = 0, K. Solving this problem for C(x ,  t )  and using the assumption 
that the solution has period 2~ in t gives 

2 1 2 iv 3 ~ f  ( t ) - ( A - $ K 2 ) f ” ( t ) - 3 f ’ ( t ) f ” ( t )  = - sint x 
or, writing f ’ = g and integrating once, 

2 
$K2(g”+g)-Ag-$2 = -- cost+constant, 

x 

where the periodicity off implies that g has period 2x and zero mean over the interval 
(-n, x). It is convenient to write g = -$A + G  and then the equation is 

K~(G”+G-$A) = 

where G has period 2x, 

Gdt = @ A  and c = Q J:n G2dt, 

The elevation of the surface q is ~~!(@-G(t-z)-G(t+x)). 
If the Reynolds number wZ2/v = O ( d ) ,  the effect of a viscous boundary layer on the 

bottom is significant and introduces a Laplace convolution of g and t-1 into (1)  as 
explained in Chester (1968). This leads to a difficult integro-differential equation for 
g,  and a more tractable model for damping is to introduce a term rUQ’(t) into the left- 
hand side of (1) to represent the viscosity of the fluid. A small surface tension y can be 
added to the model and, assuming the contact angle remains close to in, merely 
changes the coefficient ca in (2) to ( K ~ - C )  where cr = 3ys-k/pgLa [Vanden-Broeck 
19841. The critical depth for no dispersion is ( 3 y l p g ) t .  Three-dimensional effects would 
be harder to incorporate and no attempt to do so is made in this paper. 

There are two situations in which the relevant solutions of (1) or (2) can be described 
quite easily. First, when K + O O  with Ad = 0(1), a simple rescaling retrieves the 
shallow-water limit of Moiseyev’s (1958) solution. This ‘Duffing-like ’ response was 
described by Ockendon & Ockendon (1973), who also showed that as ~ + a o  with 
A K - ~  = 0 ( 1 )  other periodic solution branches can occur. In  both these cases, in the 
absence of damping, the amplitude on some solution branches can increase indefinitely 
as a suitably scaled detuning becomes large; as with Duffing’s equation these solution 
branches join up with solutions of the fully nonlinear problem where E = O(1). 
Secondly, when K = 0, equation (2) reduces to the algebraic equation 

cost + c), P=-( 4 
3x (3) 

whose solution, including small viscosity, has been discussed by Chester (1964) in 
connection with organ-pipe resonances. Solutions of (3) are continuous if c 2 1, which 
gives IAI 2 (96/x3)i = A,, say; these solutions are sketched in figure 1 (a). However, if 
IAl < A,  the solutions involve compressive shocks as shown in figure 1 (b), and in this 
detuning range the value of c is frozen at 1. 

The birth of a shock wave when h is near A, can be seen by balancing the small 
viscous term pGagainst the forcing term near t = x. Writing t = x + ~ p i ,  c = 1 +PO, 
G = p@, we obtain 

(4) 

where, in order to match with the separatrix in figure 1, B - ( 2 / 3 x ) 1 ) ~ )  as 171 + 00. 
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T G  

FIGURE l . ( a )  Continuous solutions of (3) for A = +A,,+A,,+A,, where A1 > A, > A ,  > 0. 
(a) Discontinuous solutions of (3) for A = +A,, 0, where 0 < A, < A,. 

FIGURE 2. The birth of a shock: ---, curve on which G, = 0; -, solution of (4) where 
-(x/54)!< c< 0. 

It can be shown by a shooting argument that when C >  -(x/54):, the unique 
solution for which (7- (2/3n)k 7 as 7 + co tends to  - (2/3n)A 7 as T+- 00. However 
when c = - (71/54)?, = (2/31t): 7 is this unique solution and for C < - (1t/54$ this 
solution does not have the required form as 7 + - 00 ; the solution is of the form shown 
in figure 2 as c+- (x/54)4 from above. 

Thenumerical and experimental evidence mentionedin $1  suggests that for non-zero 
values of K ,  multiple periodic solutions are possible for the same value of the detuning 
parameter A. This evidence gives a clue to the asymptotic response for small K ,  which 
we will describe in the next section. 



Resonant sloshing in shallow water 469 

3. Asymptotic solutions of (2) as K + O  

For IAl > A,, (3) is the first term of a possible asymptotic expansion of a solution 
of (2) as K + O .  However, we may also seek solutions which are close to (3) except 
in a small region where G is large. In  particular we can write t = to + KT and neglect 
terms in O ( K ~ )  to give 

( 5 )  

where we define u(t ;  c )  = u = + [(4/3x)(cos t +c)$ .  As 171 + it is now possible for G 
to approach the solution G =  u, which is slowly varying on the 7-scale and 
corresponds to a saddle point in the (G, G,)-phase plane (figure 3) when u is formally 
regarded as a constant. Although G = u would be an unstable equilibrium point if 
we regarded (5) as an oscillator, this does not mean that a particular solution of ( 5 )  
which tends to u for large T cannot correspond to a physically acceptable solution 
of the sloshing-tank problem. 

As t varies, the phase plane will slowly evolve periodically and we can construct 
a function G which for most of the period 2x in t will remain near u, but which has 
a finite number of excursions in the vicinity of the homoclinic orbit of figure 3. One 
such possible solution is shown schematically in figure 4. 

The inner problem (5) has periodic solutions in the fast timescale 7 which 
correspond to rapid oscillations or ‘spikes’ on the slow timescale t .  This inner solution 
can be matched to the outer solution G = w, as 7+f co as long as u’ = 0, so spikes can 
only occur near t =nx. 

Any finite number of spikes can be accommodated at t = 0 where u has a maximum, 
but a t  most one spike can occur at  t = x where u has a minimum value. This can be 
seen by considering the slowly varying phase plane of figure 3 and realizing that a 
periodic solution cannot escape from within the homoclinic orbit. This pattern of 
maxima and minima was indicated by Chester (1968), who considered equation (5) 
when c is close to unity. This problem has also been considered by Kath (1985) who 
uses an energy method to come to the same conclusion. 

The introduction of one or more spikes decreases the mean value of G for a given 
u and so these solution branches can exist for values of A < A,. The response diagram 
for some of these solutions is sketched in figure 5 where we plot 

c (  = ?r 8 --x Bdt) 

against the detuning parameter A. 
The number of spikes on a solution branch is indicated by (i,j) where i is the number 

of spikes at t = 0 and j is the number at t = x .  As c J. 1 the amplitude of the spike 
at t = x decreases and there is a critical value c, (close to one) at which the ( i ,  0)-solution 
and the ( i ,  1)-solution coincide. 

Starting from the ( i ,  0)-branch a t  c = co and then increasing c we can see the ‘birth’ 
of the spike at t = K by considering a local analysis of (2). Putting t = x+&, 
c = 1 + dc ,  G = K@ leads to the equation 

which may be compared with equation (4). As in 92, we require solutions of (6) 
satisfying G - (2/3x)i ) T I  as ) T I  + co. Now the arguments of Holmes & Spence (1984) 
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FIGURE 3. Sketch of phase plane for equation (5). 

T" 

FIGURE 4. A possible 'spiked' solution. 

suggest there are at least two symmetric solutions of this type if C is positive, and 
comparison arguments suggest that there are no solutions of this type if C is large 
and negative. We therefore carried out numerical experiments to test the hypothesis 
that there are exactly two symmetric solutions with the correct asymptotic behaviour 
for C greater than a critical value f i0  < 0, and that these solutions coincide for 3 = Co. 
A numerical method (NAG DOBBBF) was used to solve (6) with G(0) = a and 
G(0) = 0. The value of a was varied and the criterion used for an acceptable 
solution was as follows; either 

(i) when a value a: of the shooting parameter a was found such that the solution 
for a = a: + appeared to become unbounded for finite 7 and yet the solution 
for a = a: - had zero slope for finite 7 ,  or 

respectively. 
For large positive E ,  unique values of a*+ were found, and as C was decreased a: 
decreased and a! increased until the two values coincided at the critical value 

(ii) when a negative value ail of a gave the same behaviour with a = a!T 



Resonant sloshing in shallow water 47 1 

‘ T  

-A. A* A 

FIQURE 5. Response diagram for spiked solutions. 

/ \ 

FIQURE 6. Solutions of (6) when F > F,. The dotted curves are the loci of points where o,., = 0. 

Co x -0.45. The two solutions for > Co are sketched in figure 6. As C increases the 
lower branch will develop into the solution with a spike a t  t = K. 

An estimate of the time taken to complete a spike can be made since most of the 
time is spent near the saddle point G = u and is proportional to K log K / U ~  (Kath 1985). 
Thus as c++ co the duration of the spikes approaches zero and the mean value of 
each solution approaches that of the basic solution u as shown by the bunching of 
the response curves for large h in figure 5. 

When the number of spikes becomes large the oscillations will no longer be close 
to the homoclinic orbit, but we can exploit the fact that they occur on a fast timescale 
and use the method of adiabatic invariance or multiple scales. We introduce a fast 
time E = f ( t ) / K  and write ( 2 )  in terms of the two timescales t ,  to obtain 

f’’Gc,, + ~( f”Gc+  2f’GEt) + ~ ‘ ( G t t  + G - i A )  = i(c” - u’). 
Then we expand G = Go + K G ~  + . . . and choose f(t) so that Go, GI . . . have the same 
constant period 52 in 5, which will ensure that the expansion is uniformly valid as 
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<-. n oscillations -> 
I 

I 
FIGURE 7. Solutions which oscillate about G = -u. 

IlJ+ 00. For details of this method see Luke (1966) or Kuzmak (1959). The equation 
for Go is 

(7) 

whose phase plane is shown in figure 3. From the equation for GI and the periodicity 
condition we obtain 

where K is some constant. This relation implies that the area within a periodic 
solution in the (Go, GoE)-phase plane is K/f’(t). For all oscillatory solutions of (7) except 
those close to the homoclinic orbit, the period in 5 is close to 2xff’/3u: and hence we 
need to choose f’ = 3u:. This gives the amplitude of small oscillations about -u(t )  
as 

Thus there will be solutions of the form sketched in figure 7 (a)  where the amplitude 
of oscillations decreases and increases as u(t) increases and decreases respectively. 

It will also still be possible to have solutions with a single spike at t = + x ,  together 
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with a band of oscillations symmetrical about t = 0, as shown in figure 7 (b). For a 
solution of the type shown in figure 7, 

= -lC Gdt - 2J:(-~)dt+2[~~dt, 

since the contributions to the integral from the oscillations will cancel out to first 
order. This gives solutions with values of A in the range ( - A * ,  ,I*). The period of 
oscillations is approximately 2 ~ ~ 1 3 ~ :  on the t-scale and so as c increases the 
oscillations will ‘ bunch up ’ more closely about t = 0, and t, will decrease as c increases. 

When the oscillations about G = -u(t) have spread from -x to x we may equally 
well consider the solution as a perturbation about G = - u and use the WKB method 
on (2). This leads to a solution of the form 

where &,(t) = 3u: and A is an arbitrary small constant. This agrees with the solution 
of (7)-(9) when we put A = [$mi. The periodicity condition on G implies that 
$,(t + 2 x )  - #,(t) = 2 x n ~ ,  where n is an integer and so 

jIIC 3(u(t; c))k dt = 2 x n ~ ,  

which determines values c = c, for which periodic solutions of the form (10) are 
possible. Since c > 1 in order that ui be defined for all t, there is a minimum value 
of n, n, say, for which (10) has a solution. Near c = c, and 

we write G = - u +g, c = c, + S and A = A, + SA so that (2) is 

K 2 ( g ”  + 9) + 9Ug - = K 2  (U” + U + $( A, + Sx)), 
where 
When c, is large, 

so that (12) can be analysed using multiple scales in exactly the same way as Duffing’s 
equation when the natural frequency greatly exceeds the forcing frequency.t The 
response diagram obtained is just as for Duffing’s equation as shown in figure 8. 

As S increases the number of oscillations on the upper branches in figure 8 is 
conserved, and the solutions first evolve into solutions of the type illustrated in 
figure 7 and, if c is increased still further, into the spiked solutions. This is shown in 
figure 9. 

We can now draw, in figure 10, a fuller response diagram indicating the different 
types of periodic solutions. 

The branches on the right of the diagram with few oscillations will coalesce when 
c x 1 when the spike at t = x vanishes, but for n sufficiently large that c, P 1 the 
amplitude of all the oscillations decays as G approaches -u(t). 

discussed by Mortell & Seymour (1979). 
t The limitations of linear theory in discussing such high-frequency resonances have been 
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FIGURE 8. Response diagram for equation (12). 

Some numerical solutions have been obtained which confirm this response diagram 
and enable us to fill in the curves for moderate values of n. The same numerical method 
(NAG DO2BBF) was used to find even solutions of equation (2). The solution was 
found with G(0)  = a, G(0) = 0 and a was varied until 1G(n)1 < This gave the 
possible periodic solutions; several were found for each value of c and those for 
c x 1.25 are shown in figure 11. The procedure was repeated for other values of c ,  
and 

was estimated from these graphs. It was then possible to fix some points on the 
response diagram in the (c, /\)-plane and sketch in the first of the curves. This is done 
in figure 12 for K = 0.54, where the computed points are marked x . 

4. The effects of dissipation 
As discussed in $2, dissipative effects may be introduced in several ways. The only 

model considered here introduces a small viscous term pG on the left-hand side of 
(2). This is more tractable than the integral form considered by Chester (1968) but 
probably less realistic. 

The effect of dissipation on the phase plane of figure 3 is to change the closed orbits 
into spirals. The effect on the spiked solution is to make the spikes unsymmetrical, 
so that they no longer occur at the maximum and minimum values of u but are a t  
points where uf is negative, as shown schematically in figure 13. The numerical and 
experimental solutions of Chester & Bones (1968) fit into this pattern, although they 
modelled the dissipation in a different way and their numerical method was based 
on a Fourier-series representation rather than an asymptotic expansion. 

To see where these spikes can occur, we write the damped form of (2) in terms 
of the independent variable 6 = f ( t ) / ~  and the dependent variable h(6)  = G/u to 
obtain 

(13) 



Resonant sloshing in shallow water 

I 
f: 2 9  
P --- 

I- 1 r I 
/ 
I 
\ 

475 

P 
u 

h 
u 

P u 

u 
I 

16 F L M  167 



476 H .  Ockendon. J .  R .  Ockendon and A .  D .  Johnson 
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- 1  

I I 
A* A* ’ A  

FIQURE 10. Response diagram for equation (12). 

1 (4 

1 

0 

- I  

1 

FIQURE 11.  Numerical solutions of equation (2) when K = 0.54 and c = 1.2475+0.051h. 
(a) solutions with no spike at t = K ;  ( b )  solutions with a spike at t = X .  

We choosef’ = d to make the first-order terms independent of U .  Then, since h+ 1 
as t+_+ co, for a spike or a group of spikes near t we cannot have the damping term 
in equation (13) of one sign and so 

Puttingf’ = ui and u = [($r)(cost+c)]i, we see that (14) can only have a solution for 
t if c < 6 = [ I  + (25~*/16p~)]i .  
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I 

I 

FIQURE 12. Response diagram for solutions of (2) obtained from numerical results 
when K = 0.54. 

> 
- 3  -2  - 1  1 2 3  A 

I I I  I I  . 1 

f -  . 
G = - u  

FIGURE 13. A spiked solution with damping. 

When c is sufficiently close to 1 there are two values of t in (0, K) satisfying (14). 
As c increases the spikes that were near t = 0 for the undamped case move to the 
right and the single spike at t = K moves to the left. When c = i? the two sets of spikes 
come together and there are no solutions of this type if c > 6 .  The response curves 
are shown schematically in figure 14. It should be noted that, although this response 
diagram cannot be compared directly with those of Chester & Bones (1968), since we 
have used a different amplitude parameter, it  does give qualitatively the same 

16-2 
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(b) A = 0 

(c)O C A  < A *  

FIGURE 15. Solutions for e = 1 and Ihl < A, with , u / K ~  % 1. 

picture. This is true in spite of the different methods we have adopted for representing 
dissipation. 

As p increases (or K decreases), E approaches 1, and solutions for A E ( - A * ,  A,) can 
only occur if c is very close to 1,  and the response diagram approaches that which 
occurs in the dispersion-free case. The frequency of oscillations is high and so solutions 
will be as shown schematically in figure 15. These solutions may be compared with 
the shock solutions which are valid for K = 0 in figure 1 (b). 
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5. Conclusion 
We have presented asymptotic and numerical evidence that the response diagrams 

in figures 10 and 14 describe periodic sloshing in a shallow rectangular tank. 
As the dispersion and damping are both decreased with ~ ~ / p  = O(1) the number 

of solution branches in the (c, A)-plane (figure 10) increases indefinitely in the region 
above the dispersion-free response curve. Alternatively, if the damping is held 
constant while the dispersion parameter K is decreased, the solutions approach the 
dispersion-free ‘organ-pipe’ resonant solutions as shown in figure 14. All our work 
has assumed the mean-square amplitude c is of order 1 and we have said nothing about 
the possibility of a very large amplitude response to a small forcing. 

We are very grateful to W. Chester, S. Hastings, G. Keady, A. McNabb and F. N. 
Robinson for helpful discussions. 

REFERENCES 

CHESTER, W. 1964 J. Fluid Mech. 18, 44. 
CHESTER, W. 1968 Proc. R. Soc. Lond. A 306,5. 
CHESTER, W. & BONES, J. A. 1968 Proc. R. Soc. Lond. A 306, 23. 
Cox, E. A. & MORTELL, M. P. 1983 2. angew. Math. Phys. 34, 1. 
Cox, E. A. & MORTELL, M. P. 1986 J. Fluid Mech. 162,99. 
HOLMES, P. & SPENCE, D. A. 1984 &. J .  Mech. Appl. M a t h  37,525-538. 
KATH, W. L. 1985 Stud. Appl. Math. 72, 221. 
KUZMAK, G. E. 1959 Appl. Math. Mech. 23, 730. 
LUKE, J. C. 1966 Proc. R .  SOC. Lond. A 292,403. 
MILES, J. W. 1985 Wave Motion 7, 291-297. 
MOISEYEV, N. N. 1958 Prikl. Mat. Mech. 22, 612. 
MORTELL, M. & SEYMOUR, B. R. 1979 Proc. R. 8oc. h n d .  A 367,253. 
OCKENDON, J. R. & OCKENDON, H. 1973 J. Fluid Mech. 59, 397. 
VANDEN-BROECK, J.-M. 1984 J. FZuid Mech. 139, 97. 


